DM-DR interactions for the Hubble constant and the structure growth rate

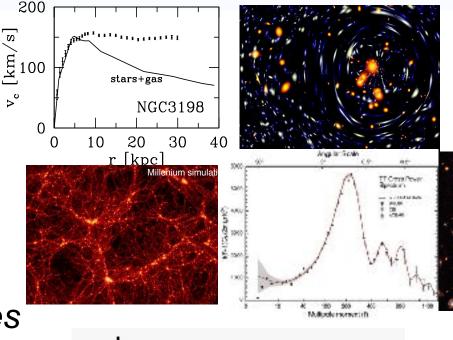
Pyungwon Ko (KIAS)

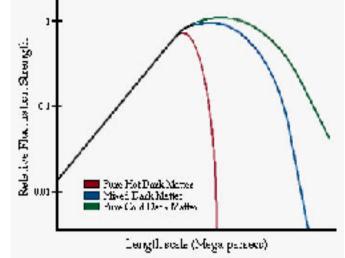
Based on P.Ko,Y.Tang;1608.01083(PLB) 1609.02307(PLB) (P.Ko,N.Nagata,Y.Tang;arXiv:1706.05605(PLB))

> COSMO 2017, Paris, France Aug. 28-Sep.1, 2017

Outline

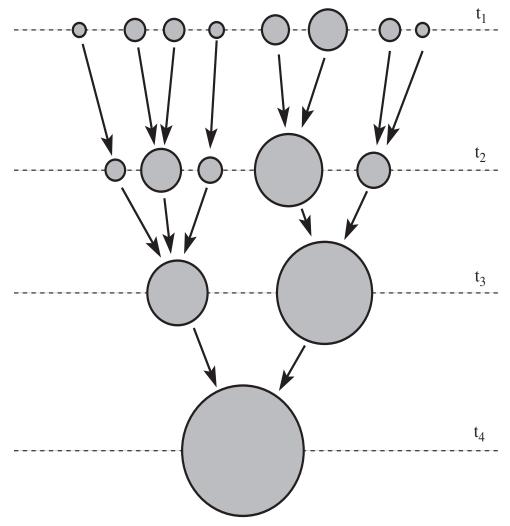
- Introduction & Motivation
 - Dark Matter evidence
 - Hubble constant and structure growth
- DM with dark gauge symmetries
- Interacting Dark Matter&Dark Radiation
 - U(1) dark photon
 - Residual Yang-Mills Dark Matter
- Summary

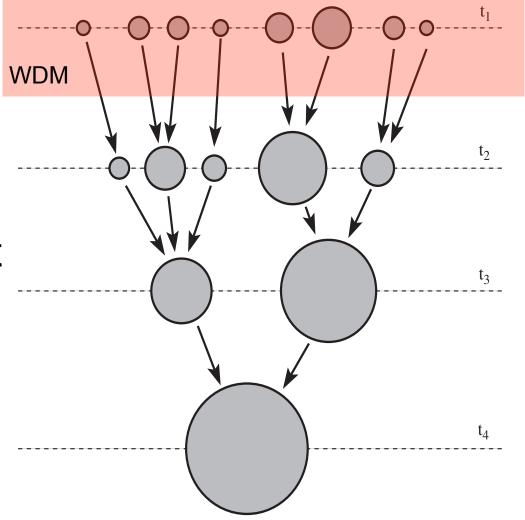

Only Higgs (~SM) and Nothing Else at the LHC & SM based on local gauge principle works very well !


Dark Matter Evidence

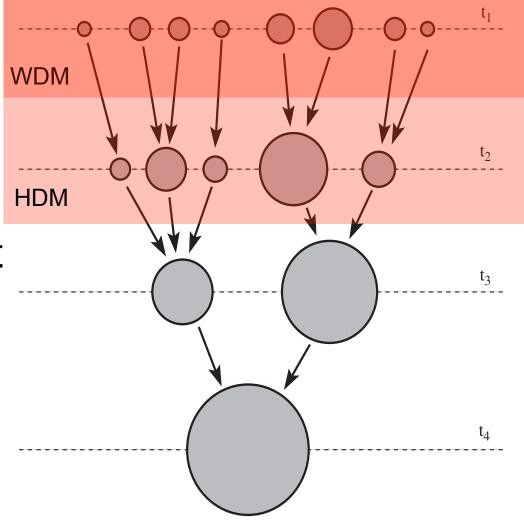
- Rotation Curves of Galaxies
- Gravitational Lensing
- Large Scale Structure
- CMB anisotropies, ...

All confirmed evidence comes' from gravitational interaction

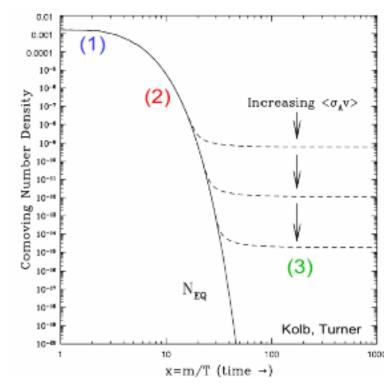

CDM: negligible velocity, WIMP WDM: keV sterile neutrino HDM: active neutrino


Merger History of Dark Halo

- Standard picture
- DM halo grow hierarchically
- Small scale structures form first
- then merge into larger halo


Merger History of Dark Halo

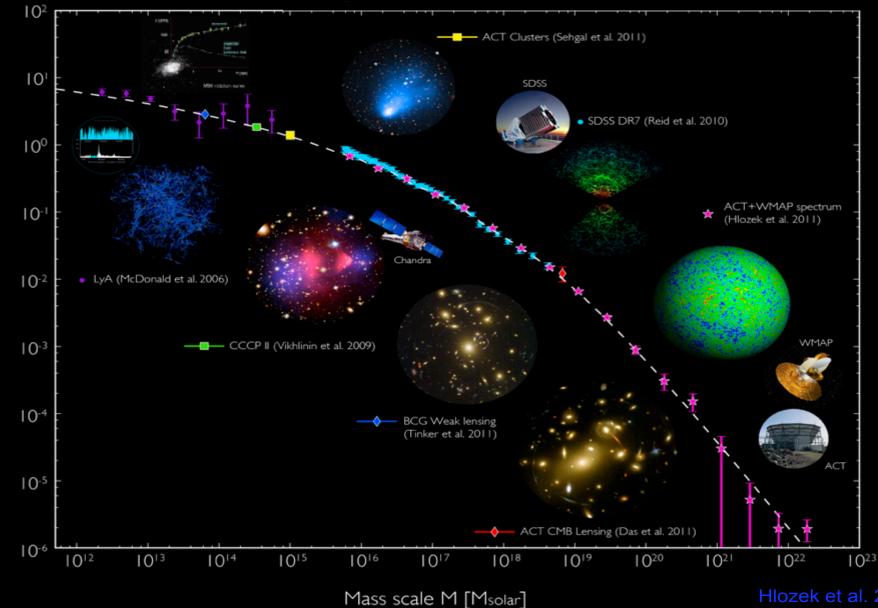
- Standard picture
- DM halo grow hierarchically
- Small scale structures form first
- then merge into larger halo


Merger History of Dark Halo

- Standard picture
- DM halo grow hierarchically
- Small scale structures form first
- then merge into larger halo

Weakly Interacting Massive Particle

- Mass around ~100GeV
- Coupling ~ 0.5
- Correct relic abundance $\Omega \sim 0.3$
- Thermal History
 - Equilibrium XX<>ff
 - Equilibrium XX >ff
 - Freeze-out
- Cold Dark Matter (CDM)



LCDM Paradigm

 Universe : Isotropic and homogeneous at large scale > FRW metric

 SM + Collisionless DM + Cosmological constant + Big Bang

ACDM: successful on large scales

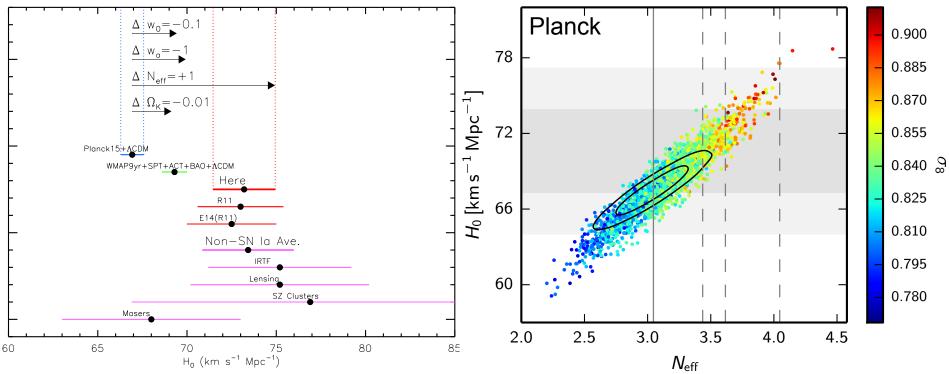
Mass Variance Δ M/M

Theoretical Scenarios

Supersymmetry Extra-dimension Sterile Neutrino Axion Wimpzilla Dark atom/pion/glueball **Bose-Einstein condensate** Primordial black hole DM w/ Dark Gauge symmetries

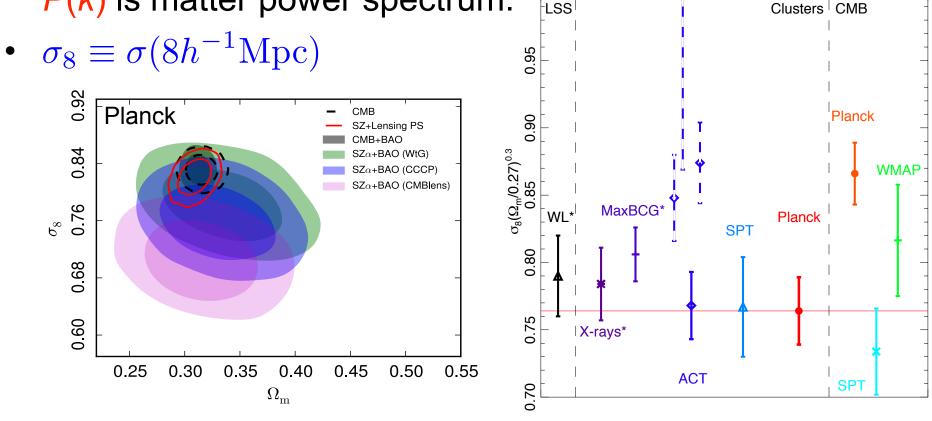
Interacting Dark Matter

Why Interacting DM ?


- Theoretically interesting
 - Atomic DM, Mirror DM, Composite DM
 - Eventually, all DM is *interacting* in some way, the question is how strongly?
 - Self-Interacting DM $\frac{\sigma}{M_X} \sim \mathrm{cm}^2/\mathrm{g} \sim \mathrm{barn}/\mathrm{GeV}$
- Possible new testable signatures
 - CMB, LSS, BBN
 - Other astrophysical effects,...
- Solution of CDM controversies
 - Cusp-vs-Core, Too-big-to-fail, missing satellite,...
 - H_{0} , σ_8 ? 2-3 σ , systematic uncertainty

Tension in Hubble Constant?

• Hubble Constant H_0 defined as the present value of


$$H \equiv \frac{1}{a} \frac{da}{dt} = \frac{\sqrt{\rho_r + \rho_m + \rho_\Lambda}}{M_p}$$

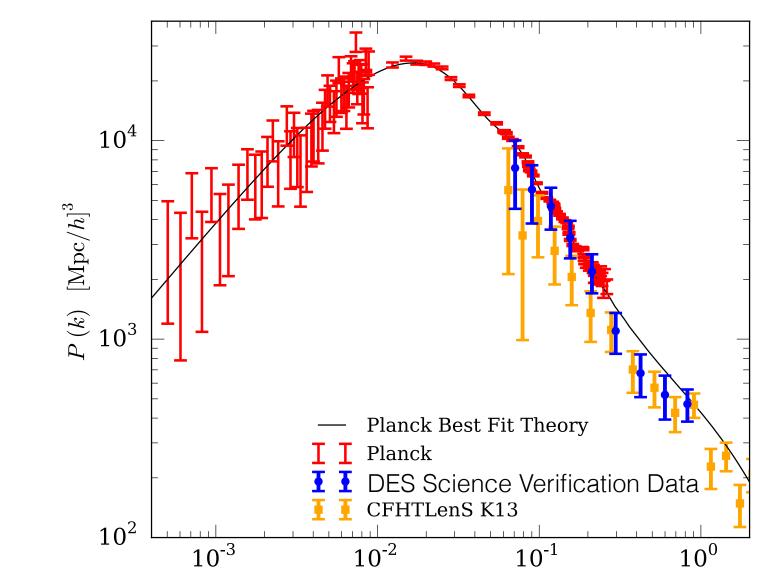
- Planck(2015) gives $67.8 \pm 0.9 \text{ km s}^{-1} \text{Mpc}^{-1}$
- HST(2016) gives $73.24 \pm 1.74 \text{ km s}^{-1} \text{Mpc}^{-1}$

Tension in σ_8 ?

- Variance of perturbation field \rightarrow collapsed objects $\sigma^2(R) = \frac{1}{2\pi^2} \int W_R^2(k) P(k) k^2 dk,$
- where the filter function $W_R(k) = \frac{3}{(kR)^3} [\sin(kR) kR\cos(kR)]$, P(k) is matter power spectrum.

Tension in σ_8 ?

Planck2015, Sunyaev–Zeldovich cluster counts

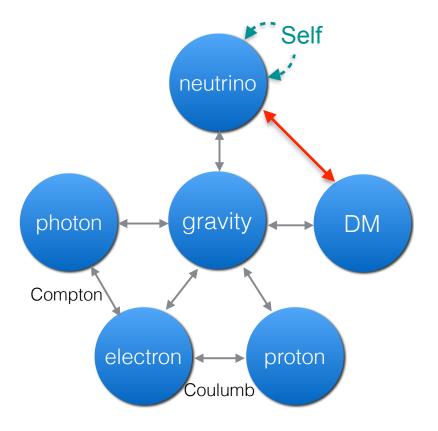

Data	$\sigma_8 \left(\frac{\Omega_{\rm m}}{0.31}\right)^{0.3}$	$\Omega_{ m m}$	σ_8
WtG + BAO + BBN	0.806 ± 0.032	0.34 ± 0.03	0.78 ± 0.03
CCCP + BAO + BBN [Baseline]	0.774 ± 0.034	0.33 ± 0.03	0.76 ± 0.03
CMBlens + BAO + BBN	0.723 ± 0.038	0.32 ± 0.03	0.71 ± 0.03
$\overline{\text{CCCP} + H_0 + \text{BBN}}$	0.772 ± 0.034	0.31 ± 0.04	0.78 ± 0.04

Planck2015, Primary CMB

	-		
Parameter	[1] Planck TT+lowP	[2] Planck TE+lowP	[SPlanck EE+lowP [4] Planck TT, TE, EE+lowP
$ \frac{\Omega_{\rm b}h^2}{\Omega_{\rm c}h^2} \dots \dots$	$\begin{array}{c} 0.02222 \pm 0.00023\\ 0.1197 \pm 0.0022\\ 1.04085 \pm 0.00047\\ 0.078 \pm 0.019\\ 3.089 \pm 0.036\\ 0.9655 \pm 0.0062\\ 67.31 \pm 0.96\\ 0.315 \pm 0.013\\ \hline 0.829 \pm 0.014\\ 1.880 \pm 0.014 \end{array}$	$\begin{array}{c} 0.02228 \pm 0.00025\\ 0.1187 \pm 0.0021\\ 1.04094 \pm 0.00051\\ 0.053 \pm 0.019\\ 3.031 \pm 0.041\\ 0.965 \pm 0.012\\ 67.73 \pm 0.92\\ 0.300 \pm 0.012\\ 0.802 \pm 0.018\\ 1.865 \pm 0.019\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Matter Power Spectrum

DES astroph/150705552



Interacting feadct Matter AD Radiation

Since all components are connected by Einstein's equation

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

- first-order perturbation of Boltzmann equation
 - anisotropy in CMB
 - matter power spectrum for LSS
- (Self-)Interaction sometimes also matters

Yong TANG(U.Tokyo)

Interacting Dark Matter

KEKPH2017

18

Diffusion Damping

 Dark Matter scatters with radiation, which induces new contributions in the cosmological perturbation equations,

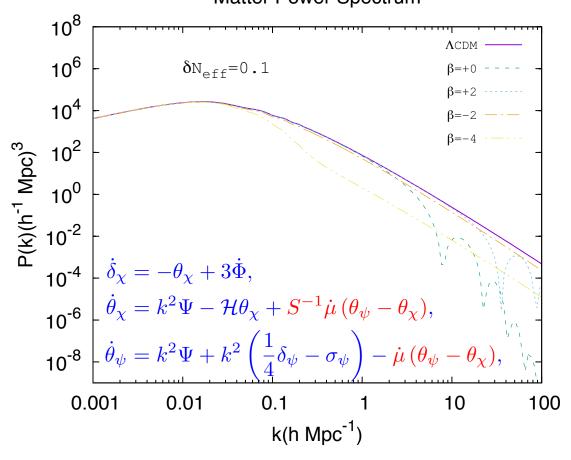
$$\begin{split} \dot{\delta}_{\chi} &= -\theta_{\chi} + 3\dot{\Phi}, \\ \dot{\theta}_{\chi} &= k^{2}\Psi - \mathcal{H}\theta_{\chi} + S^{-1}\dot{\mu}\left(\theta_{\psi} - \theta_{\chi}\right), \\ \dot{\theta}_{\psi} &= k^{2}\Psi + k^{2}\left(\frac{1}{4}\delta_{\psi} - \sigma_{\psi}\right) - \dot{\mu}\left(\theta_{\psi} - \theta_{\chi}\right), \end{split}$$

where dot means derivative over conformal time $d\tau \equiv dt/a$ (*a* is the scale factor), θ_{ψ} and θ_{χ} are velocity divergences of radiation ψ and DM χ 's, *k* is the comoving wave number, Ψ is the gravitational potential, δ_{ψ} and σ_{ψ} are the density perturbation and the anisotropic stress potential of ψ , and $\mathcal{H} \equiv \dot{a}/a$ is the conformal Hubble parameter. Finally, the scattering rate and the density ratio are defined by $\dot{\mu} = an_{\chi} \langle \sigma_{\chi\psi} c \rangle$ and $S = 3\rho_{\chi}/4\rho_{\psi}$, respectively.

Relation to Particle Physics

- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m² *Thomson scattering -> CMB, BAO*
 - DM-radiation with massive mediator, <σc>~T²/m⁴ Boehm *et al*(astro-ph/0410591,1309.7588)
 - non-Abelian radiation, <σc>~1/T²
 Schmaltz et al(2015), 1507.04351,1505.03542
 - (pseudo-)scalar radiation, <σc>~1/T², μ²/T⁴, T²/μ⁴
 Y.Tang,1603.00165(PLB)

DR .


Effects on LSS

Parametrize the cross section ratio

Y.Tang,1603.00165(PLB)

$$u_0 \equiv \left[\frac{\sigma_{\chi\psi}}{\sigma_{\rm Th}}\right] \left[\frac{100{\rm GeV}}{m_{\chi}}\right], u_{\beta}(T) = u_0 \left(\frac{T}{T_0}\right)^{\beta},$$

where $\sigma_{\rm Th}$ is the Thomson cross section, $0.67 \times 10^{-24} {\rm cm}^{-2}$. Matter Power Spectrum

Why dark gauge sym ?

Questions about DM

- Electric Charge/Color neutral
- How many DM species are there ?
- Their masses and spins ?
- Are they absolutely stable or very long lived ?
- How do they interact with themselves and with the SM particles ?
- Where do their masses come from ? Another (Dark) Higgs mechanism ? Dynamical SB ?
- In order to answer these questions, we must find DM in particle physics experiments (direct/indirect detections, collider searches, etc.) and study their properties

DM phenomenology often requires

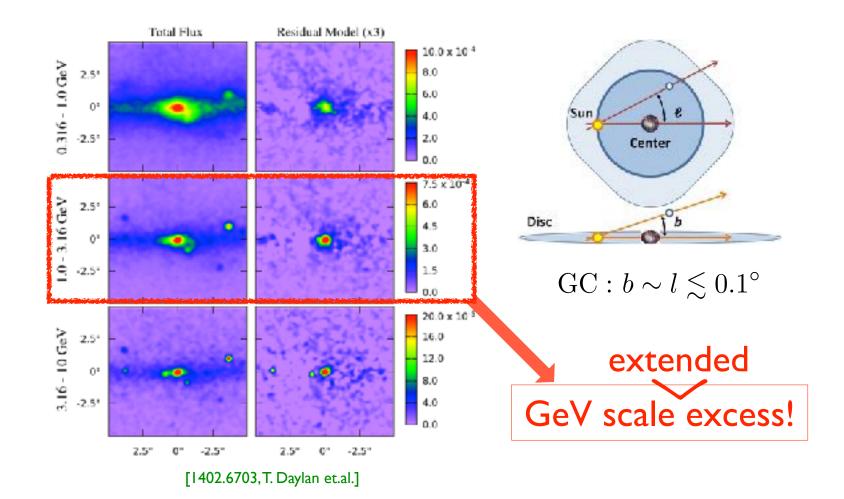
- New force mediators (scalar, vector,) in order to solve some puzzles in the standard collision less CDM paradigm
- Extra particles in the dark sector (excited DM, dark radiation, force mediators, etc.) often used for phenomenological reasons
- Any good organizing principles for these extra particles ?
- Answer : Dark gauge symmetry (dark gauge boson/dark Higgs appear naturally, their dynamics is completely fixed by gauge principle)

What is going on in the SM?

- SM based on Poincare + local gauge symmetry within 4-dim QFT : extremely successful and provides qualitative answers to light neutrino masses, non-observation of proton decay (Lepton # and baryon # : accidental symmetry of the renormalizable SM, and broken only by higher dim operators)
- Electron is stable, because electric charge is conserved and electron is the lightest particle with nonzero electric charge
- Proton is long lived because B-violation in SM comes from dim-6 operator

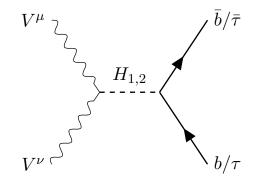
DM with dark gauge symmetries

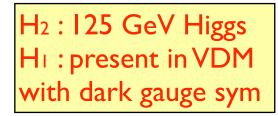
- DM : either absolutely stable or long lived (could be due to local gauge symmetry or some accidental symmetry) and both can be accommodated by local dark gauge symmetries
- Global sym could be broken by gravity, and may not be good enough for DM stability/longevity
- The only issue is the mass scales of DM, dark gauge bosons/dark Higgs, and their gauge/ Yukawa couplings, all of which are unknown yet
- DM phenomenology can be very rich, if these new particles are not too heavy

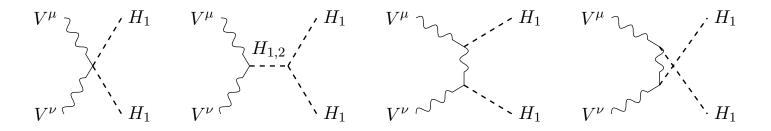

Singlet Portal

- If there is a hidden (dark) sector with its own dark gauge symmetry and DM is thermal, then we need a portal to it
- There are only three unique gauge singlets in the SM + RH neutrinos

Baek, Ko, Park, arXiv:1303.4280, JHEP


Example: Fermi-LAT γ-ray excess


• Gamma-ray excess in the direction of GC


GC gamma ray in VDM

[1404.5257, P. Ko, WIP & Y.Tang] JCAP (2014) (Also Celine Boehm et al. 1404.4977, PRD)

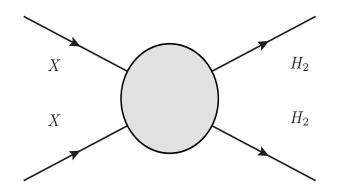


Figure 2. Dominant s channel $b + \bar{b}$ (and $\tau + \bar{\tau}$) production

Figure 3. Dominant s/t-channel production of H_1 s that decay dominantly to $b + \bar{b}$

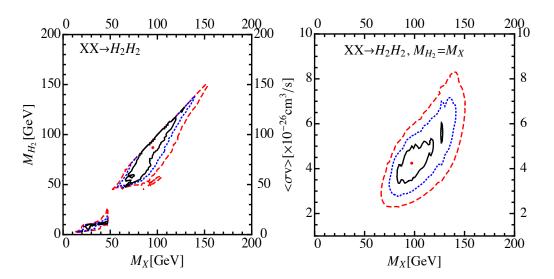


FIG. 3: The regions inside solid(black), dashed(blue) and long-dashed(red) contours correspond to 1σ , 2σ and 3σ , respectively. The red dots inside 1σ contours are the best-fit points. In the left panel, we vary freely M_X , M_{H_2} and $\langle \sigma v \rangle$. While in the right panel, we fix the mass of H_2 , $M_{H_2} \simeq M_X$.

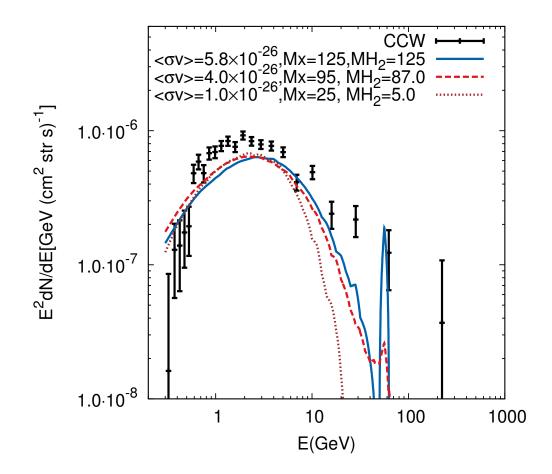


FIG. 2: Three illustrative cases for gamma-ray spectra in contrast with CCW data points [11]. All masses are in GeV unit and σv with cm³/s. Line shape around $E \simeq M_{H_2}/2$ is due to decay modes, $H_2 \rightarrow \gamma \gamma, Z \gamma$.

Thanks to C. Weniger for the covariant matrix

This explanation is possible only in DM models with dark gauge symmetry

P.Ko, Yong Tang. arXiv:1504.03908

Channels	Best-fit parameters	$\chi^2_{\rm min}/{\rm d.o.f.}$	<i>p</i> -value
$XX \to H_2H_2$	$M_X \simeq 95.0 \text{GeV}, M_{H_2} \simeq 86.7 \text{GeV}$	22.0/21	0.40
(with $M_{H_2} \neq M_X$)	$\langle \sigma v \rangle \simeq 4.0 \times 10^{-26} \mathrm{cm}^3 \mathrm{/s}$		
$XX \to H_2H_2$	$M_X \simeq 97.1 \mathrm{GeV}$	22.5/22	0.43
(with $M_{H_2} = M_X$)	$\langle \sigma v \rangle \simeq 4.2 \times 10^{-26} \mathrm{cm}^3 \mathrm{/s}$		
$XX \to H_1H_1$	$M_X \simeq 125 \text{GeV}$	24.8/22	0.30
(with $M_{H_1} = 125 \text{GeV}$)	$\langle \sigma v \rangle \simeq 5.5 \times 10^{-26} \mathrm{cm}^3 \mathrm{/s}$		
$XX \to b\bar{b}$	$M_X \simeq 49.4 \text{GeV}$	24.4/22	0.34
	$\langle \sigma v \rangle \simeq 1.75 \times 10^{-26} \mathrm{cm}^3 \mathrm{/s}$		

TABLE I: Summary table for the best fits with three different assumptions.

In Short, Dark Gauge Symmetry

- guarantees the absolute stability of weak scale DM due to unbroken (sub)group
- or guarantees its longevity due to accidental global symmetry of the underlying gauge symmetry (like baryon # in the SM)
- naturally houses DM, DR, Dark Force Carriers (dark photon, dark Higgs etc.) and interactions among them and interactions with the SM particles, resulting rich dark phenomenology
- the only issues : mass scales and coupling strengths

Models for Interacting DM-DR

- Light sterile fermion DR + Dark photon
- Nonabelian DM + DR
- (Hidden charged DM and chiral DR)

A Light Dark Photon

- Lagrangian P.Ko, YT, 1608.01083(PLB)
 - $\mathcal{L} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi + \bar{\chi} \left(i D m_{\chi} \right) \chi + \bar{\psi} i D \psi$ $\left(y_{\chi} \Phi^{\dagger} \bar{\chi}^{c} \chi + y_{\psi} \Phi \bar{\psi} N + h.c. \right) V(\Phi, H),$
- DM χ (+1), dark radiation ψ (+2), scalar(+2)
- U(1) symmetry (*unbroken*), massless dark photon V_{μ} (Phi VEV = 0)
- Φ is responsible for the DM relic density $\Omega h^2 \simeq 0.1 \times \left(\frac{y_{\chi}}{0.7}\right)^{-4} \left(\frac{m_{\chi}}{\text{TeV}}\right)^2$.
- Φ can decay into ψ and N.

Dark Radiation δNeff

• Effective Number of Neutrinos, Neff

$$\rho_R = \left[1 + N_{\text{eff}} \times \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \right] \rho_\gamma,$$
$$\rho_\gamma \propto T_\gamma^4$$

- In SM cosmology, N_{eff} = 3.046. Neutrinos decouple around MeV, and then freely stream.
- Cosmological bounds

Joint CMB+BBN, 95% CL preferred ranges

$$N_{\text{eff}} = \begin{cases} 3.11^{+0.59}_{-0.57} & \text{He}+Planck \text{TT}+\text{lowP}, \\ 3.14^{+0.44}_{-0.43} & \text{He}+Planck \text{TT}+\text{lowP}+\text{BAO}, \\ 2.99^{+0.39}_{-0.39} & \text{He}+Planck \text{TT}, \text{TE}, \text{EE}+\text{lowP}, \end{cases}$$

Planck 2015. arXiv:1502.01589

Constraint on New Physics

$$\left. \begin{array}{l} N_{\rm eff} < 3.7 \\ m_{\nu, \, \rm sterile}^{\rm eff} < 0.52 \, \, {\rm eV} \end{array} \right\} \quad 95\%, \, Planck \, {\rm TT+lowP+lensing+BAO}. \end{array}$$

Dark Radiation δNeff

Massless dark photon and fermion will contribute

$$\delta N_{\text{eff}} = \left(\frac{8}{7} + 2\right) \left[\frac{g_{*s}(T_{\nu})}{g_{*s}(T^{\text{dec}})} \frac{g_{*s}^{D}(T^{\text{dec}})}{g_{*s}^{D}(T_{D})}\right]^{\frac{4}{3}},$$

where T_{ν} is neutrino's temperature,

 g_{*s} counts the effective number of dof for entropy density in SM,

 g_{*s}^D denotes the effective number of dof being in kinetic equilibrium with V_{μ} .

For instance, when $T^{\text{dec}} \gg m_t \simeq 173 \text{GeV}$ for $|\lambda_{\Phi H}| \sim 10^{-6}$, we can estimate δN_{eff} at the BBN epoch as

$$\delta N_{\rm eff} = \frac{22}{7} \left[\frac{43/4}{427/4} \frac{11}{9/2} \right]^{\frac{4}{3}} \simeq 0.53, \tag{1}$$

 $\delta N_{eff}=0.4\sim1$ for relaxing tension in Hubble constant

Diffusion Damping

 Dark Matter scatters with radiation, which induces new contributions in the cosmological perturbation equations,

$$\begin{split} \dot{\delta}_{\chi} &= -\theta_{\chi} + 3\dot{\Phi}, \\ \dot{\theta}_{\chi} &= k^{2}\Psi - \mathcal{H}\theta_{\chi} + S^{-1}\dot{\mu}\left(\theta_{\psi} - \theta_{\chi}\right), \\ \dot{\theta}_{\psi} &= k^{2}\Psi + k^{2}\left(\frac{1}{4}\delta_{\psi} - \sigma_{\psi}\right) - \dot{\mu}\left(\theta_{\psi} - \theta_{\chi}\right), \end{split}$$

where dot means derivative over conformal time $d\tau \equiv dt/a$ (a is the scale factor), θ_{ψ} and θ_{χ} are velocity divergences of radiation ψ and DM χ 's, k is the comoving wave number, Ψ is the gravitational potential, δ_{ψ} and σ_{ψ} are the density perturbation and the anisotropic stress potential of ψ , and $\mathcal{H} \equiv \dot{a}/a$ is the conformal Hubble parameter. Finally, the scattering rate and the density ratio are defined by $\dot{\mu} = an_{\chi} \langle \sigma_{\chi\psi} c \rangle$ and $S = 3\rho_{\chi}/4\rho_{\psi}$, respectively.

Scattering Cross Section

The averaged cross section $\langle \sigma_{\chi\psi} \rangle$ can be estimated from the squared matrix element for $\chi\psi \to \chi\psi$:

$$\overline{|\mathcal{M}|^2} \equiv \frac{1}{4} \sum_{\text{pol}} |\mathcal{M}|^2 = \frac{2g_X^4}{t^2} \left[t^2 + 2st + 8m_\chi^2 E_\psi^2 \right], \quad (9)$$

where the Mandelstam variables are $t = 2E_{\psi}^2 (\cos \theta - 1)$ and $s = m_{\chi}^2 + 2m_{\chi}E_{\psi}$, where θ is the scattering angle, and E_{ψ} is the energy of incoming ψ in the rest frame of χ . Integrated with a temperature-dependent Fermi-Dirac distribution for E_{ψ} , we find that $\langle \sigma_{\chi\psi} \rangle$ goes roughly as $g_X^4/(4\pi T_D^2)$.

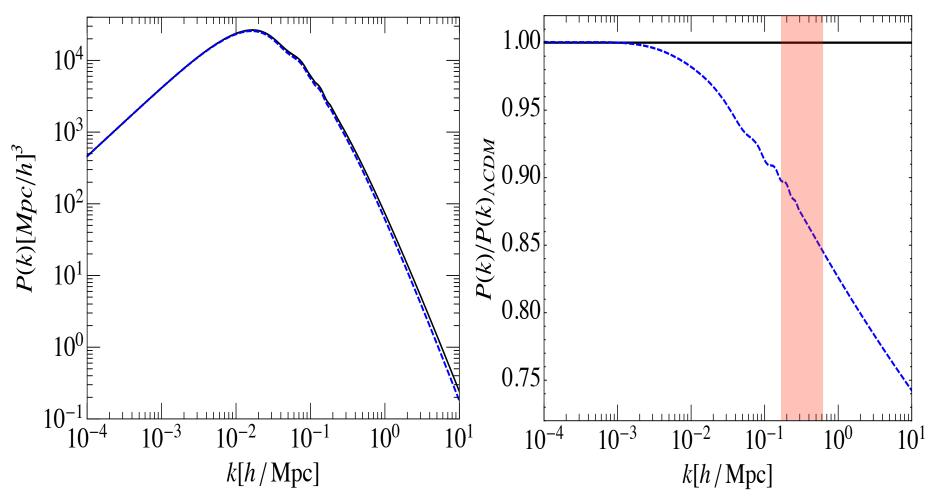
• In general, the cross section could have different temperature dependence, depending on the underlying particle models.

Numerical Results

We take the central values of six parameters of ΛCDM from Planck,

$$\begin{split} \Omega_b h^2 &= 0.02227, & \text{Baryon density today} \\ \Omega_c h^2 &= 0.1184, & \text{CDM density today} \\ 100\theta_{\text{MC}} &= 1.04106, & 100 \times \text{approximation to } r_*/D_A \\ \tau &= 0.067, & \text{Thomson scattering optical depth} \\ \ln \left(10^{10}A_s\right) &= 3.064, & \text{Log power of primordial curvature perturbations} \\ n_s &= 0.9681, & \text{Scalar Spectrum power-law index} \end{split}$$

which gives $\sigma_8 = 0.817$ in vanilla Λ CDM cosmology. With the same input as above, now take


 $\delta N_{\rm eff} \simeq 0.53, m_{\chi} \simeq 100 {\rm GeV} \text{ and } g_X^2 \simeq 10^{-8}$

in the interacting DM case, we have $\sigma_8 \simeq 0.744$.

Modified Boltzmann code CLASS(Blas&Lesgourgues&Tram)

Matter Power Spectrum

DM-DR scattering causes diffuse damping at relevant scales, resolving σ_8 problem

Results

We take the central values of six parameters of ΛCDM from Planck [1],

$$\Omega_b h^2 = 0.02227, \Omega_c h^2 = 0.1184, 100\theta_{\rm MC} = 1.04106,$$

$$\tau = 0.067, \ln\left(10^{10}A_s\right) = 3.064, n_s = 0.9681, \qquad (11)$$

which gives $\sigma_8 = 0.817$ in vanilla ΛCDM cosmology. With the same input as above, now we take $\delta N_{\text{eff}} \simeq 0.53$, $m_{\chi} \simeq 100 \text{GeV}$ and $g_X^2 \simeq 10^{-8}$ in the interacting DM case, we have $\sigma_8 \simeq 0.744$ which is much closer to the value $\sigma_8 \simeq 0.730$ given by weak lensing survey CFHTLenS [3].

Residual Non-Abelian DM&DR P.Ko&YT, 1609.02307

- Consider *SU(N)* Yang-Mills gauge fields and a Dark Higgs field Φ $\mathcal{L} = -\frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} + (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - \lambda_{\phi}(|\Phi|^{2} - v_{\phi}^{2}/2)^{2},$
- Take SU(3) as an example,

The massive gauge bosons $A^{4,\cdots,8}$ as dark matter obtain masses,

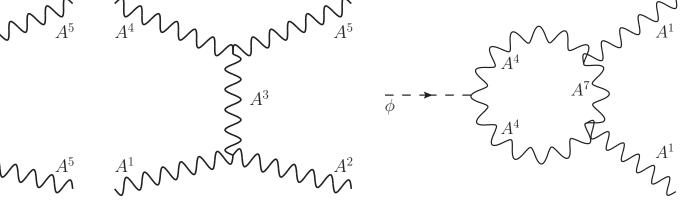
$$m_{A^{4,5,6,7}} = \frac{1}{2}gv_{\phi}, \ m_{A^8} = \frac{1}{\sqrt{3}}gv_{\phi},$$

and massless gauge bosons $A^{1,2,3}_{\mu}$. The physical scalar ϕ can couple to $A^{4,\cdots,8}_{\mu}$ at tree level and to $A^{1,2,3}$ at loop level.

$$SU(N) \to SU(N-1)$$

- 2N-1 massive gauge bosons: Dark Matter
- (N-1)²-1 massless gauge bosons: Dark Radiation
- mass spectrum

$$m_{A^{(N-1)^2,...,N^2-2}} = \frac{1}{2}gv_\phi, \ m_{A^{N^2-1}} = \frac{\sqrt{N-1}}{\sqrt{2N}}gv_\phi,$$


This can be proved by looking at the structure of f^{abc} . Divide the generators t^a into two subset,

$$a \in [1, 2, ..., (N-1)^2 - 1], a \in [(N-1)^2, ..., N^2 - 1].$$

Since $[t^a, t^b] = i f^{abc} t^c$ for the first subset forms closed SU(N-1) algebra, we have $f^{abc} = 0$ when only one of a, b and c is from the second subset. If one index is $N^2 - 1$, then other two must be among the second subset to give no vanishing f^{abc} , because t^{N^2-1} commutes with t^a from SU(N-1).

Phenomenology

• Scattering and decay processes

Constraints

$$\begin{split} \delta N_{\text{eff}} &= \frac{8}{7} \begin{bmatrix} (N-1)^2 - 1 \end{bmatrix} \times 0.055, \\ g^2 &\lesssim \frac{T_{\gamma}}{T_A} \left(\frac{m_A}{M_P} \right)^{1/2} \sim 10^{-7}, \\ &\circ \text{N} \\ &\circ$$

- N<6 if thermal
- small coupling,
- non-thermal production,
- low reheating temperature

Schmaltz et al(2015) EW charged DM

Yong TANG(U.Tokyo)

Interacting Dark Matter

KEKPH2017

Matter Power Spectrum

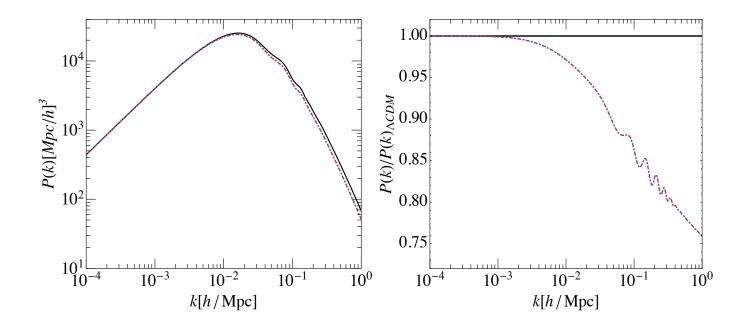
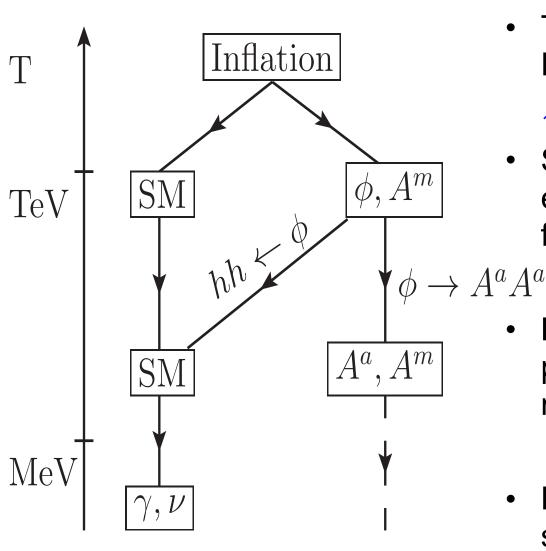


FIG. 3. Matter power spectrum P(k) (left) and ratio (right) with $m_{\chi} \simeq 10$ TeV and $g_X^2 \simeq 10^{-7}$, in comparison with Λ CDM. The black solid lines are for Λ CDM and the purple dot-dashed lines for interacting DM-DR case, with input parameters in Eq. 21. We can easily see that P(k) is suppressed for modes that enter horizon at radiation-dominant era. Those little wiggles are due to the well-known baryon acoustic oscillation.


Results

$$\Omega_b h^2 = 0.02227, \Omega_c h^2 = 0.1184, 100\theta_{\rm MC} = 1.04106,$$

$$\tau = 0.067, \ln\left(10^{10}A_s\right) = 3.064, n_s = 0.9681,$$
 (21)

and treat neutrino mass the same way as Planck did with $\sum m_{\nu} = 0.06$ eV, which gives $\sigma_8 = 0.815$ in vanilla ACDM cosmology. Together with the same inputs as above, we take $\delta N_{\text{eff}} \simeq 0.5$, $m_{\chi} \simeq 10$ TeV and $g_X^2 \simeq 10^{-7}$ in the interacting DM-DR case, we have $\sigma_8 \simeq 0.746$ which is much closer to the value $\sigma_8 \simeq 0.730$ given by weak lensing survey CFHTLenS [12].

- Within DM models with local dark SU(3) broken into SU(2), DM, DR and their interactions have common origin!
- And we could increase Neff, H_0 whereas making σ_8 decrease, thereby relaxing the tension between H_0 and σ_8

Thermal History

- The minimal setup with Higgs portal interaction $\lambda_{\phi H} \Phi^{\dagger} \Phi H^{\dagger} H$
- SM and DS are decoupled early, DM is produced by freeze-in mechanism
- Late time decay, entropy production due to nonrelativistic decay, DR(δN_{eff})
- DM and DS scattering suppress the matter power spectrum

Summary

- We discussed some cosmological effects with interacting Dark Matter and Dark Radiation within DM models with dark gauge symmetries
- This scenario is motivated theoretically and also from observational tensions, H_0 and σ_8
- We present two particle physics models:
 - A massless dark photon with unbroken U(1) gauge symmetry
 - Residual non-Abelian Dark Matter and Dark Radiation
- It is possible to resolve tensions simultaneously